Google Maps partners with DeepMind AI for improved ETAs

By William Smith
With fellow Alphabet stablemate DeepMind, Google Maps ETA service has recently been improved through machine learning techniques...

Thanks to its in-built technology, Google Maps offers functionality far and beyond that of the paper maps of old.

One of the most useful functions of navigation software such as Google Maps is parsing traffic data to provide estimates on arrival times and alternative routes- a great benefit to the users which Google says drive over one billion kilometres using Google Maps daily.

With fellow Alphabet stablemate DeepMind, a UK-based AI research company famous for the Victory of its AlphaGo platform over Go grandmaster Lee Sedol, that service has recently been improved through machine learning techniques.

While traffic data can be used to give the state of the roads at the present moment in time, Google also uses that data to predict what traffic will look like in the future, as Johann Lau, Product Manager, Google Maps, explained in a blog post. “To predict what traffic will look like in the near future, Google Maps analyzes historical traffic patterns for roads over time. For example, one pattern may show that the 280 freeway in Northern California typically has vehicles traveling at a speed of 65mph between 6-7am, but only at 15-20mph in the late afternoon. We then combine this database of historical traffic patterns with live traffic conditions, using machine learning to generate predictions based on both sets of data.”

While Google’s predictions for ETA were already 97% accurate, the partnership with DeepMind has involved using a machine learning technique known as Graph Neural Networks to improve that figure in cities worldwide by up to 50%, and to anticipate traffic that is yet to occur.

In its own blog post, DeepMind said: “Our model treats the local road network as a graph, where each route segment corresponds to a node and edges exist between segments that are consecutive on the same road or connected through an intersection. In a Graph Neural Network, a message passing algorithm is executed where the messages and their effect on edge and node states are learned by neural networks. From this viewpoint, our Supersegments are road subgraphs, which were sampled at random in proportion to traffic density. A single model can therefore be trained using these sampled subgraphs, and can be deployed at scale.” 

Share

Featured Articles

Now is the ideal time to drive deep tech disruption

Deep tech may seem like it's years away but now is the time for organisations to be building a deep tech strategy, according to insights by BCG

UK has a technology trust problem among older bank customers

The global financial services industry has undergone enormous change, but trust in technology remains an issue for many in the UK, according to research

McLaren Racing & Alteryx Analytics: Data-driven to win

McLaren CEO Zak Brown, Head of Technology Ed Brown, and CDAO at Alteryx, Alan Jacobson, detail the widespread organisational benefits of good data

Bitcoin’s climate footprint is a step in the wrong direction

Data & Data Analytics

ICYMI: The potential of 5G and Europe’s technology gap

Enterprise IT

Oracle NetSuite’s SuiteWorld 2022 - Day 3 Highlights

Data & Data Analytics