O’Reilly: the adoption of AI across enterprise

By William Smith
Share
O’Reilly analysts have revealed how, and how many, respondents are ramping up AI projects─and AI’s scope in their future...

This year, O’Reilly, “the premier source for insight-driven learning on technology and business”, announced the results of a survey, AI Adoption in the Enterprise 2020. The survey is entirely based on interviews and responses with 1,388 respondents, coming from 25 industries─70% of which are from technology roles, while the remaining 30% are data scientists, data engineers, AIOps engineers, or their managers. Within the report, O’Reilly has found that there has been a growing trend in the evaluation, implementation, and outcomes of AI enterprise adoption across the past year. 

Here, we take a look at some of the insights within the study. 

  1. This year, AI is being adopted evenly across enterprises, with Research & Development (R&D) taking the lead

Within O’Reilly’s survey, there are lots of little gems, but this one, in particular, captures the attention; enterprises are currently looking to stabilise their adoption patterns for AI across a number of functional areas. In fact, the report suggests that nine to twelve functional areas included in the survey already have over 10% adoption. 

AI is a transformative advancement in the tech sector, and we already know that it has the potential to redefine enterprises and organisations as we know them. AI could or even should make companies more customer-driven, adaptive, and capable of generating and sharing intelligence faster than we’ve ever seen before.   

The framework needed to lead a company through its transformation must be able to both create knowledge and remain focused on the customer or client, to ensure that the business thrives both internally and externally. It must, in other words, “provide an understanding of the entire customer journey.” 

  1. Supervised machine learning (ML) algorithms are the most popular ML method in enterprises today

It turns out, 73% of enterprises that feature advanced expertise in AI are using machine learning techniques a lot. They’re using ML to “interpret, classify, and analyse the large data sets they’ve accumulated over years of operations.” Simultaneously, O’Reilly found that enterprises who are specifically evaluating the power of AI are fond of using deep learning in their pilots. 

  1. Unexpected outcomes and predictions are the most significant risks for enterprises using AI today 

For 53% of the enterprises that are considered “advanced” in their use of AI, right now, “the greatest risk when building or deploying ML models is unexpected outcomes and predictions.” Fortunately, the more experienced you are with a system, the more likely you are to work on making processes and methods increasingly transparent so that you can identify any potential issues or negative facets.

Share

Featured Articles

Capgemini: How Gen AI Drives Rise in Corporate Emissions

Capgemini reports that Gen AI's surge is driving data center emissions, challenging sustainability goals & prompting calls for efficient AI strategies

How Apple Says it is Using Siri to Protect User Data

Apple prioritises privacy in Siri through on-device processing, minimal data collection and advanced security protections for users

WEF: How AI Will Reshape 86% of Businesses by 2030

A new WEF report predicts that AI and automation will create 170 million jobs while displacing 92 million roles as companies adapt to technological change

Why Apple is Appealing to its Investors over DEI Programmes

Enterprise IT

How the UK Plans to Become the World’s AI Leader

Digital Transformation

Why AWS is Committing $5bn to Thailand Cloud Infrastructure

Data & Data Analytics