O’Reilly: the adoption of AI across enterprise

By William Smith
O’Reilly analysts have revealed how, and how many, respondents are ramping up AI projects─and AI’s scope in their future...

This year, O’Reilly, “the premier source for insight-driven learning on technology and business”, announced the results of a survey, AI Adoption in the Enterprise 2020. The survey is entirely based on interviews and responses with 1,388 respondents, coming from 25 industries─70% of which are from technology roles, while the remaining 30% are data scientists, data engineers, AIOps engineers, or their managers. Within the report, O’Reilly has found that there has been a growing trend in the evaluation, implementation, and outcomes of AI enterprise adoption across the past year. 

Here, we take a look at some of the insights within the study. 

  1. This year, AI is being adopted evenly across enterprises, with Research & Development (R&D) taking the lead

Within O’Reilly’s survey, there are lots of little gems, but this one, in particular, captures the attention; enterprises are currently looking to stabilise their adoption patterns for AI across a number of functional areas. In fact, the report suggests that nine to twelve functional areas included in the survey already have over 10% adoption. 

AI is a transformative advancement in the tech sector, and we already know that it has the potential to redefine enterprises and organisations as we know them. AI could or even should make companies more customer-driven, adaptive, and capable of generating and sharing intelligence faster than we’ve ever seen before.   

The framework needed to lead a company through its transformation must be able to both create knowledge and remain focused on the customer or client, to ensure that the business thrives both internally and externally. It must, in other words, “provide an understanding of the entire customer journey.” 

  1. Supervised machine learning (ML) algorithms are the most popular ML method in enterprises today

It turns out, 73% of enterprises that feature advanced expertise in AI are using machine learning techniques a lot. They’re using ML to “interpret, classify, and analyse the large data sets they’ve accumulated over years of operations.” Simultaneously, O’Reilly found that enterprises who are specifically evaluating the power of AI are fond of using deep learning in their pilots. 

  1. Unexpected outcomes and predictions are the most significant risks for enterprises using AI today 

For 53% of the enterprises that are considered “advanced” in their use of AI, right now, “the greatest risk when building or deploying ML models is unexpected outcomes and predictions.” Fortunately, the more experienced you are with a system, the more likely you are to work on making processes and methods increasingly transparent so that you can identify any potential issues or negative facets.


Featured Articles

Cognizant and Microsoft Partner to Drive Enterprise Gen AI

Cognizant and Microsoft have announced an expansion of their global partnership to drive the adoption of generative AI in the enterprise

Top 100 Women 2024: Safra Catz, Oracle - No. 7

Technology Magazine’s Top 100 Women in Technology honours Oracle’s Safra Catz at Number 7 for 2024

Microsoft, AWS & Oracle: Why Big Tech is Investing in Japan

We explore what Microsoft, Oracle, AWS and Google Cloud’s multi-billion dollar investments mean for the digital landscape in Japan

Advancing AI in Retail with Pick N Pay's Leon Van Niekerk

AI & Machine Learning

How Intel AI is Powering the 2024 Paris Olympic Games

AI & Machine Learning

OpenText’s Muhi Majzoub: Engineering Platform Growth with AI

Enterprise IT