Cybersecurity: do AI and Machine Learning make a difference?

By Matt Aldridge
Despite the confusion around AI and ML, most respondents planned to continue increasing spending on these technologies throughout 2020...

We’ve recently marked the three-year anniversary of “WannaCry”, a powerful ransomware cyberattack which infected over 200,000 computers in 150 countries over the course of just a few days. It worked by first infecting a Windows computer, then encrypting files on the PC's hard drive making them impossible for users to access and demanding a ransom payment in bitcoin in order to decrypt them. WannaCry affected everyone from individuals to large organisations like the NHS, Spanish telecom giant Telefonica and FedEx with losses estimated at up to $4 billion.

Although few are as successful or as devastating as “WannaCry”, there are still a huge number of cyberattacks generated by criminals each year. In 2019 alone, there were 9.9 billion malware attacks. That's simply too much volume for humans to handle.

Fortunately, technologies such as artificial intelligence (AI) and machine learning (ML) are picking up some of the slack. 

Machine learning is a subset of artificial intelligence and uses algorithms born of previous datasets and statistical analysis to make assumptions about patterns of behaviour. The computer can then adjust its actions and perform functions for which it hasn’t been explicitly programmed.

With its ability to sort through millions of files and identify potentially hazardous ones, machine learning is a godsend for cybersecurity. It’s essential for uncovering threats and automatically squashing them before they can wreak havoc.

The rise of AI/ML in cybersecurity

In 2017, around the same time as the WannaCry attack, we were surveying IT decision makers across the United States and Japan on their use of AI and ML in cybersecurity, discovering that approximately 74% of businesses in both regions were already using some form of AI or ML to protect their organisations from cyber threats.

And over the last several years, its use has sustained consistent growth among businesses. When we checked in again with both regions at the end of 2018, 73% of respondents we surveyed reported they planned to use even more AI/ML tools in the following year.

Fast forward to our most recent report published this year, which surveyed 800 IT professionals with cybersecurity decision making power across the US, UK, Japan, and Australia/New Zealand regions, and we’ve discovered that 96% of respondents now use AI/ML tools in their cybersecurity programs. 

However, there were some findings that left us surprised.

A lack of understanding

Despite the increase in adoption rates for these technologies, our survey found that more than half of IT decision makers admitted they do not fully understand the benefits of these tools. Even more jarring was that nearly three quarters (74%) of IT decision makers worldwide really don’t care whether they’re using AI or ML, as long as the tools they use are effective in preventing attacks. 

This highlights the continued confusion and lack of knowledge regarding the use cases and capabilities of AI and machine learning-based cybersecurity tools, as well as a general distrust in their capabilities, based on how such tools are advertised by vendors.

Scepticism across geographies

Despite a small regional variance, the overall results of our survey also indicated a relatively consistent level of uncertainty across all geographies with respect to how much benefit AI/ML brings. 

This really highlights that continued education and increased awareness of the benefits that the technologies bring across the industry is crucial to ensuring businesses around the world become more resilient against cyberattacks and other IT challenges.

Preparing for the future

Despite the confusion around AI and ML, most respondents planned to continue increasing spending on these technologies throughout 2020.

For these organisations, it’s crucial that they improve their understanding in order to realise maximum value. 

By vetting and partnering with cybersecurity vendors who have long-standing experience using and developing AI/ML, and who can provide expert guidance, we expect businesses will be more likely to achieve the highest levels of cyber resilience, whilst efficiently maximising the capabilities of the human analysts on their teams.

By Matt Aldridge, Principal Solutions Architect, Webroot, an OpenText company 


Featured Articles

Now is the ideal time to drive deep tech disruption

Deep tech may seem like it's years away but now is the time for organisations to be building a deep tech strategy, according to insights by BCG

UK has a technology trust problem among older bank customers

The global financial services industry has undergone enormous change, but trust in technology remains an issue for many in the UK, according to research

McLaren Racing & Alteryx Analytics: Data-driven to win

McLaren CEO Zak Brown, Head of Technology Ed Brown, and CDAO at Alteryx, Alan Jacobson, detail the widespread organisational benefits of good data

Bitcoin’s climate footprint is a step in the wrong direction

Data & Data Analytics

ICYMI: The potential of 5G and Europe’s technology gap

Enterprise IT

Oracle NetSuite’s SuiteWorld 2022 - Day 3 Highlights

Data & Data Analytics